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Stability of the steady convective motion in a layer of viscous fluid contained between two
vertical, parallel planes heated to different temperatures, was investigated in [lTtodl. It
was shown, that the resulting flow consisting of two, mutually opposing convective streams
becomes hydrodynamically unstable under the monotonous perturbations at relatively small
values of the Grasshof number.

A nontrivial generalization of this problem is met in the problem on stability of convec-
tive motion in a layer, arbitrarily orientated with respect to the force of gravity. We find
that the temperature gradient in an inclined fluid layer has a vertical component. If this
vertical gradient is directed downward (heating from below) and is sufficiently high, then
the instability may occur even in the fluid at rest. When the convective motion takes place,
we obviously have two physically distinct mechavisms of instability the steady state: (1)
the hydrodynamic instability of two opposing convective flows and (2) the thermal (convec-
tive) instability of the fluid heated from below. Thermal instability occurs when the layer
ia nearly horizontal, this position corresponds to heating from below. When the layer is ver-
tical or positioned at such an angle that it corresponds to heating from above, then the mech-
enism of the instability is hydrodynamic. Within the transitional range of the angles of in-
clination, both mechanisms are active.

Below we study the stability of a steady convective flow in an inclined layer. Using the
Galerkin method we obtain the spectrum of normal perturbations and find the critical values
of the Grasshof number defining the boundary of the region of stability, relative to the para-
meters of the problem. We find, that for all orientations of the layer, the most ‘‘dangerous”’
{from the point of view of stability) are the monotonous perturbations with wavelengths of
order of the layer thickness. It is interesting, that the transition from the thermal to the
hydrodynamic instability on varying the orientation of the layer, is continuous. This is due
to the change in the fundamental monotonous level of instability.

Convective motion in an inclined layer has a distinctive feature, namely the existence
of the oscillatory instability parameters in the defined region. We find, that this oscillatory
instability is associated (at the fundamental level) with short wavelength perturbations.

We note that an attempt of investigation of the convective motion in ar inclined layer
was performed earlier [5]. However, the decremental spectrum was not investigated and the
only problem, was to obtain the critical Grasshof number. First approximations to the method
utilized in [5} did not lead to the determination of the boundary of the monotonous stability
over the whole range of the angles of inclination. Inferences conceming the oscillatory in-
stability which appeared in [5] were alsc based on first approximations to the method and
were not confirmed when higher order approximations were used {4

1. Steady motion, Let us consider a plane fluid layer contained between two paral-
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lel planes x = 14 inclined at an angle a to the vertical (Fig. 1). Solid boundaries of the
layer are kept at constant temperatures 6. Under these conditions the fluid cannot be in
equilibrium (except in the limit when the layer is horizontal i.e. @ = £90°) and convective
motion takes place under any difference of temperatures.

Let us choose

h, h*/~v, gBOR2/v, O, pgBOR

as the units of distance, time, velocity, temperature and
pressure respectively. Here v denotes the kinematic viscosity
p is the density, g is the acceleration due to gravity and 8 is
the coefficient of thermal expansion,

Then the dimensionless equations of motion, heat conduc-
tivity and continuity, can be written as

& LG T)V=—Vp+AVH Ty (L1)

Fig. 1 aT 1 o
T+G\VT_-—ITAT, divv=20 (1.2)

(G=gBOM3/v3, P=v/]Y)

Dimensionless parameters G and P appearing in these equations, are the Grasshof and
Prandt! numbers.

In the steady state the equations have a solution describing a plane parallel motion of
fluid afar from the ends of the layer. The only velocity component different from zero is
v, = vo (x) and the temperature depends only on the transverse coordinate Ty=Ty(x). Then
(1.1) and (1.2) yield the following expressions for the velocity, temperature and pressure in
the steady flow

o — v+ Tocosa, 2B Tysina, Ty =0 (1.3)
At the boundaries of the layer we have
v (1) = 0, T, (—1) =1, T, () = —1 (1.4)
which, together with (1.3), gives
Vo =15 (x* —2) cosa, T,=—z
Po = Y/,2% sin & +4- const (1.5)

Thus we see that in the steady state mode we have a flow with a cubic velocity profile,
and a linear temperature distribution. The flow velocity is highest, when the layer is ver-
tical (@ = 0°). As & + £ 907, the steady state flow is transformed into the equilibrium
state of a horizontal layer heated from below (minus sign), or from above (plus sign).

2, Perturbation equations. Letv, O and p denote a small plane perturbation
of a steady state flow (1.5). Eliminating from (1.1) the pressure by taking the curl and in~
troducing the perturbation stream function ) (x, 3, ¢) by

vy =—0%/dz, v, =0 /0x 2.1)

.

we obtain after the linearization, the following Egs.:
9 a . w a0 . a0
rAv+ G (v.,?;-A\p-—vo -%) = AAY - 37 Sina+ —=cosa (2.2)

30 a0 I

where A denotes a two-dimensional Laplacian in x and z. At the boundaries of the layer,
the velocity and temperature perturbations disappear
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-%:;=%=ﬁ=0 when z =41 (24)
Eqgs. (2.2) and (2.3) together with the boundary conditions (2.4) , have solutions in the
form of normal perturbations

$(7,2,0) = O (z)e Bz, D(z,z,t) = T (2)e iz (2.5)

Here @ (x) and T (x) denote the perturbation amplitudes, A is a complex decrement and
k is a real wave number.

Inserting (2.5) into (2.2) and (2.3) we obtain a system of homogeneous linear equations
for the perturbation amplitudes

AAD 4 jkGeos o HD + ikT sina + T’ cosa = — AAD . (2.6)
PAT + ikG (TyD — f,T cosa) = — AT (2.7)

where
HO = f"0—foAD, A =-,3§:T-—k2. fo="1/e(2%—1)

Amplitudes ¢ and T satisfy the homogeneous boundary conditions

O=Q@Q'=7T=0 when r=-1 (28)

3. Method of solution., We shall use the Bubnov-Galerkin method to obtain the
approximate solution of the boundary value problem (2.6) to (2.8).

We shall use the systems of perturbation amplitudes of the fluid at rest, as basis func-
tions for approximating the perturbation amplitudes of the stream function ® (x) and the tem-
perature T (x). These amplitudes are defined as the eigenfunctions of the following boun-
dary value problems

AAgy = — pAg;, Qi(E)=¢/(+1)=0
P—-lAOk == - vke,‘., ek (:t1) == O (3.1)

where 1, and v, are the perturbation decrements in the fluid at rest.
Inserting the series

T= Zamemv @ = E Bn‘pn (3-2)

m n
into (2.6) and (2.7) and constructing the integral conditions of the Bubnov-Galerkin method
we obtain a homogeneous linear system defining the coefficients a_and Bn

§ {[ik sina

CJ’"" -+ cos aD,,m] A+ [IRG cos ol iy + (M — 1y) 8,u0] Bm} =0

PG cos By — (A — V) 81n) Oy + TKGC 1B} = 0 (3.3)
m
where
! , 1
Con = 3 0,.9nd7, Dpp = T 5 0" Pndz, Hym= 71" 3 PuH@pdz
-1 . -1 L -1
Bin =\ 6,/u8,d, Jo=§ 0utg.dz
-1 -1

Explicit expressions for the basis functions and for the matrix elements were given earl-
ier in [3 and 4{.

Condition of solvability of the homogeneous system (3.3) yields a characteristic equation
which can be used to determine the decrements A, the latter themselves being the eigen-
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values of the boundary value problem (2.6) to (2.8). We had retained 8 to 12 terms in the
expansions (3.2). Thus, to find the decrements A we had to diagonalize matrices of the 16th
to the 24th order. This was performed on a digital computer, using the orthogonal step
method [6].

4. Decremental spectrum and monotonous instability. Characteristic
perturbation decrements A depend on the parameters of the problem, namely, on the Grasshof
{G) and the Prandtl (P) numbers, perturbation wave number & and the angle @ of inclination
of the layer to the vertical.
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Fig. 2

Fig. 2 shows the lowest levels of the decremental spectrum as functions of the parame~
ter %= \/kG for fixed values k= 1 and P = 1, and for various orientations of the layer.
Solid lines represent the real levels of “‘isothermal’” perturbations, while the broken lines
refer to ‘‘nonisothermal’ perturbations {for classification of the levels see [3}). Dash-dot
lines represent real parts of the complex-conjugate level pairs,

Fig. 2a shows the decremental spectrum for a horizontal layer heated from below (a =
= - 90°, Rayleigh problem). Here all decrements are real {monotonous perturbations) and
only simple intersections of levels are possible. Some of the decrements become negative
with increasing », thus giving rise to monotonous instability. Points of intersection of
the decremental lines with the # -axis yield an increasing sequence of the critical Rayleigh
numbers defining the spectrum of instability of the equilibrium of fluid relative to the ap-
pearance of convection (*).

(Footnote carried forward to next page)
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When the orientation of the layer deviates from the horizontal, then the structure of the
spectrum {s sltered (Fig. 2b and subsequent). Under an arbitrarily small deviation from the
horinontal, simple intersections disappesr. Real levels merge into complex conjugate pairs
{oscillatory perturbations) which may sometimes (with increasing x ) separate back into
two real levels. Change of the structure of the spectrum is connected with the fact, that,
when the layer is inclined when the developing perturbation pattern is superimposed on the
steady convective flow, while in the limiting Rayleigh case (a = — 90°) they develop in
the fluid at rest.

From the point of view of stability, the most interesting is the lowest real level inter-
secting the % -axis. Fig. 2 shows that the position of the critical point changes with in-
clination. Moreover, the interlocking of the levels results in a change of modes responsible
for 4he onset of the monotonous instability. T'hus, when @ = — 909, the instability depends
on the lowest thermal level v ,; when a = — 50°, the mstabllxty is generated by the level
vy, while when a = 0°, the ¢ ucal point is given by the “‘mixture’’ of the thermal and iso-
thermal levels v, and p ..

Critical Grasshof Number G* depends on the parameters k, P and . When P and . are
fixed, the function G *(k) defines a neutral carve which has a minimum at the point k . The
corresponding minimum critical Grasshof number G* defines the boundary of monotonous
instability for the given values of P and a..

Fig. 3 shows the dependence of G* on a for

900 G: / several values of the Prandt] number, obtained
from the spectra and from the neutral curves. Two
600ty A ranges of values of the angle a can be distin-
T _— guished. When the layer is nearly horizontal (-90°
Z <a < - 50°), the critical values G*  depend es-
300 sentially on the Prandtl pumber, and the product
P=1 G* P is practically constant. Thus in this range
) of values of a, the boundary of instability is de-

40 -s0°  -3p’ s 30 6‘0 fined by the critical Rayleigh number R = GP and
this, as we know, is the feature characteristic of
the thermal equilibrium instability. Indeed, within
this range of o the breakdown of the steady state is caused by a Rayleigh type instability
arising when the fluid is heated from below. When a = — 90, a purely convective step ap-
pears. Over the range of angles close to — 90°, the instability has also Rayleigh nature
with one difference, namely, that it is developed over the pattem of a slow convective mo-
tion caused by a low horizontal temperature gradient.

In the range a > — 50° the picture is different. Thermal instability mechanism is no lon-
ger predominant and it is absent when a > 0° This is due to the fact, that the heated layer
is then situated in the upper part, and this corresponds to a stable temperature distribution.
Under these conditions the breakdown of the steady state is caused by the hydrodynamic
instability of two opposing convective flows. The Grasshof number G, practically indepen-
dent of the Prandtl number, is now the defining parameter. The limiting case as @ -» 90°,
corresponds to the horizontal layer heated from above. Since, as we know, a fluid heated
from above is in a stable equilibrium, we have G* s~ as a + 90°,

The critical value of the wave number k_ corresponding to a minimum on the neutral curve
is practically independent of P and weakly dependent on a. We find that, when o changes
from — 90° to + 60°, k_ decreases uniformly from 1.56 to 1.30.

It should be stressed that the changeover from the convective instability mechanism to
the hydrodynamic one on increasing & from — 90° is smooth, since it corresponds to a con-
tinuous change of values along one branch of instability.

Fig. 3

*} We note that the critical values of the Grasshof number for the lowest four levels of in-
stability, coincide to within a tenth of a percent with the values obtained in [7] from the
exact characteristic equation for the Rayleigh spectrum.
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5. Short wave perturbations and oscillatory instability. Whena
plane, horizontal fluid layer is heated from below, short wave perturbations lead to uusta-
ble equilibrium when the temperature difference is sufficiently high. We find that at high
values of k, the critical Rayleigh numbers increase smoothly along the neutral stability
curve R (k) according to the law R* ~ k*4[8].

If, on the other hand, the layer is vertical and heated from one side, then the steady mo-
tion is stable under the perturbations possessing high wave numbers: the neutral curve
G* (k) has an asymptote at k = k ;. The limit value k, is almost independent of P and its
numerical value is k ~ 2 (see [2 to 4]). All short wave perturbations with k > k,, decay.

A question erises, conceming the behavior of the short wave perturbations with k > &,
over the transitional range of angles. To enswer this, we shall consider Fig. 4 showing two
A lowest levels of the decremental spectrum

for P =1 and k= 2.5> k.
10 At a = — 815, both levels intersect the
x-axis at the points g and . At the point
¢ real levels merge, forming a complex con-
gate pair of decrements. The real part of the
pair (common to both levels) is negative in
the region (cd) and positive to the right of
the point d. Thus, both perturbations decay
monotonously in the region to the left of a.
On the interval {ab) we have monotonous instability with respect to one of the perturbations,
while on the interval {bc) both perturbations increase smooth. Interval {cd) represents the
region of existence of the oscillatory instability in which both perturbations increase in the
oscillatory manner. To the right of d we have a staile region (decaying oscillatory pertur
bations). Fig., 4 shows the lines representing two lowest decrements for @ = — 78° and
a = — 70°, which illustrate the deformation of the spectrum with changing a..

Fig. 5 shows the stable region on the ( \/l_c_C., o )-plane for fixed P = 1 and k = 2.5. On the
line @ = — 90° we have two lowest critical values of the Rayleigh instability spectrum.
Broken vertical line indicates, for comparison, the case
YKG W of @ = — 81° discussed above. Various regions are num-

g

2 bered as follows: 1 denotes the stable region (both per-
turbations decay smoothly); 2,denotes a stable region
in which both perturbations decay in the oscillatory
manner; 3 denotes the region of monotonous instability
“Y for the v -perturbation; 4 denotes the region of monoton~
-"“/
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ous instability for both perturbations and 5 the region
of oscillatory instability (shaded).

Thus, we see that the instability under short wave
perturbations occurs only when the layer is nearly hori-
zoutal, the position corresponding to the heating from
-74° below. With the angle of inclination to the horizontal
v increasing, the short wave instability disappears, and

Fig. 5 its rate of disappearance is proportional to the value of
k. For k = 2.5, the perturbations begin to decay when the angle of inclination of the layer
to the horizontal exceeds 15°,

An interesting fact which emerges from this is, that an oscillatory instability with res-
pect to short wave perturbations exists in a certain parametric region. This does not take
place in the limiting cases, when the layer is either horizontal, or vertical.

6. Upper levels of the instability spectrum. In conclusion we shall con-
sider the problem of behavior of the upper instability levels with varying a.. We know, that
when the layer is horizontal and heated from below, then an infinite increasing sequence of
the critical Grasshof numbers exists for every value of the wave number. We have shown
above that the lowest of these critical numbers is smoothly transformed, on varying a, into
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the critical value defining the boundary of stability of the steady convective flow. Since
only one critical value and a unique level of instability exist (see [4]) when the layer is
vertical, the question arises concerning the fate of the other levels of the Rayleigh insta-
bility spectrum when the orientation of the layer is varied,

To ascertain this problem, we have computed the decrements which gave, at o = — 90°,
AT 1Y the second and third level of the Rayleigh instability
& / spectrum. We found that when the layer deviates from
5 3 the horizontal, then the upper instability levels close,
36'9_““__“,' 7 the process being analogous to that described in Sec-
x, tion 5.
Fig. 6 shows the stability pattem illustrating the be-
120 ‘ havior of the lowest three spectral modes (for P = 1 and
/] \ k = 1). The regions are numbered as follows: I — stable
: N region, decay of all three perturbations; 2 — smooth
80 - ) =~ growth of the first and smooth decay of the second and
¥y third perturbations; 3 — smooth growth of the first, oscil-
40 latory decay of the second and third perturbations; 4 —
2 smooth growth of the first and second and smooth decay
*" of the third perturbation; 5 — the region of monotonous
L instability with respect to all three perturbations; 6 —

1
-90° -83° -88" -81° & region of oscillatory instability for the second and third
Fig. 6 perturbation.

Thus we see that, when the layer deviates from the horizontal by a small amount, the
Rayleigh spectrum degenerates and only one {lowest) level of the monotonous instability is
preserved.
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