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Stabilty of the steady convective motion in a layer of viscous fluid contained between two 
~attica~, pardltl planes heated to different temperatures, wss investigated in [l to 41. It 

W&O shown, that the resulting flow consisting of two, mutually opposing convective streams 

becomes hydrodynamically unstable under the monotonous perturbations at relatively small 
values of the Grasshof number. 

A nontrivial generalization of this problem is met in the problem on stability of convec- 

tive motion in a layer, arbitrarily orientated with respect to the force of gravity. We find 
that the temperature gradient in an inclined fluid layer has a vertical component. If this 
vertical gradient is directed downward (heating from below) aad is sufficiently high, then 
the iustability may occur even in the fluid at rest. When the convective motion takes place, 

we obviously have two physically distinct mechanisms of instability the steady state: (1) 
the hy~odyn~ic instability of two opposing convective flows and (2) the thermal fconvec- 

tivef instability of the fluid heated from below. Thermal instability occurs when the layer 
is.nearly horizontal, this position corresponds to heating from below. When the layer is ver- 
tical or positioned at such an augle that it corresponds to heating from above, then the mech- 
anism of the instability is hydrodynamic. Within the transitional range of the angles of in- 
clination, both mechanisms sre active. 

Below we study the stability of a steady convective flow in an inclined layer. Using the 
Gal&in method we obtain the spectrum of normal perturbations and find the critical values 
of the Grass&of number defining the boundary of the region of stability, reIative to the psra- 

meters of the problem. We find, that for all orientations of the layer, the most “dangerous” 
(from the point of view of stability) are the monotonous perturbations with wavelengths of 
order of the layer thickness. It is interesting, that the transition from the thermal to the 
hydrodynamic instability on varying the orientation of the layer, is continuous. This is due 
to the change in the fundamental monotonous level of instability. 

Convective motion in an inclined layer has a distinctive feature, namely the existence 
of the oscillatory instability parameters in the defined region. We find, that this oscillatory 

instability is associated (at the fundamental level) with short wavelength perturbations. 
We note that an attem t of investigation of the convective motion in an inclined layer 

was performed earlier [ 5 . P However, the decremental spectrum was not investigated and the 
only problem, was to obtain the critical Crasshof number. First approximations to the method 
utilized in [S] did not lead to the determination of the boundary of the monotonous stability 
over the whole range of the angles of inclination. Inferences concerning the oscillatory in- 

stability which appeared in [S] were also based on first approximations to the method and 

wera not confirmed when higher order approximations were used [4]. 

1. Steady motion. Let us consider a plane fluid layer contained between two paral- 
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lel planes x= fh inclined at an angle Q to the vertical (Fig. 1). Solid boundaries of the 

layer are kept at constant temperatures &8. Under these conditions the fluidcannot be in 
equilibrium (except in the limit when the layer is horizontal i.e. Q I f90°) and convective 

IV 

motion takes place under any difference of temperatures. 
Let us choose 

z 

8 
a 9 f -6 

h h2 / v, gBQh2 /v, 8, pgWh 
as the units of distance, time, velocity, temperature and 

pressure respectively. Here v denotes the kinematic viscosity 
p is the density, g is the acceleration due to gravity and p is 
the coefficient of thermal expansion. 

Then the dimensionless equations of motion, heat conduc- 

tivity and continuity, can be written as 

$+G(vv)v=-VP-j-b+ Ty (1.1) 
Fig. 1 

-$+GvvT=+AT, divv=O 
11.2) 

(c=gpW/v~, P=v/x) 

Dimensionless parameters G and P appearing in these equations, are the Grasshof and 

Prandtl numbers. 
In the steady state the equations have a solution describing a plane parallel motion of 

fluid afar from the ends of the layer. The only velocity component different from zero is 

vz = vo dr) and the temperature depends only on the transverse coordinate To = To (x1. Then 

(1.1) and (1.2) yield the following expressions for the velocity, temperature and pressure in 
the steady flow 

aP0 
- = ~g~-j- Tocosa, aP0 
ax - = - T,,sina, ax Toa = 0 (1.3) 

At the boundaries of the layer we have 

vu (+I) = 0, To (--1) = 1, To (1) = - 1 P-4) 
which, together with (1.31, gives 

v,, = ‘/o (x3 - x) cos a, I’, = --5 

p. = i/2x2 sin a + const 0.5) 
Thus we see that in the steady state mode we have a flow with a cubic velocity profile, 

and a linear temperature distribution. The flow velocity is highest, when the layer is ver- 

tical (a = 00). As Q + k90°, the steady state flow is transformed into the equilibrium 
state of a horizontal layer heated from below (minus sign), or from above (plus sign). 

2. Perturbation equations. Let w, 6 and p denote a small plane perturbation 
of a steady state flow (1.5). Eliminating from (1.1) the pressure by taking the curl and in- 
troducing the perturbation stream function $fx, I, 1) by 

KC = -&#I&, v, = ag/ax 

we obtain after the linearization, the following Eqs.: 

(Z-1) 

$A~+G(vo~A$-&~-$) -AA%+gsina+ gcosa (2.2) 

~+++~08~)=$A6 (2.3) 
where A denotea a two-dimensional Laplacian in x and I. At the boundaries of the layer, 
the velocity and temperature perturbations disappear 
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$=$=6=0 whenxzfi (2.4) 

Eqs. (2.2) and (2.31 together with the boundary conditions (2.41 , have solutions in the 
form of normal perturbations 

9 (z, 2.1) = 0 (2) e-XLt*kz, j) (z, z, q = ?’ (3.) e--).:tiLz (2.5) 
Here @b) and T (xl denote the perturbation amplitudes, h is a complex decrement and 

k is a real wave number, 
Inserting (2.5) into (2.21 and (2.31 we obtain a system of homogeneous linear equations 

for the perturbation amplitudes 

AA@ + ikGcos a H(D + ikT sin a f T’ cos a = - 3LAQ. (2.6) 

P-‘AT + ikG (T,‘Q - foT cos a) = - 3LT (2.7) 
where 

Ha, = fo"a, - f,,AcD, A = s-kl, fo = l/6 (z” - x) 

Amplitudes @ and T satisfy the homogeneous boundary conditions 

@==W=T=O whaz=&l (2.8) 

3. Method of solution. We shall use the Bubnov-Gale&in method to obtain the 
approximate solution of the boundary value problem (2.6) to (2.8). 

We shall use the systems of perturbation amplitudes of the fluid at rest, as basis func- 
tions for approximating the perturbation amplitudes of the stream function @(xl and the tem- 

perature T(z). These amplitudes are defined as the eigenfunctions of the following boun- 
dary value problems 

AAqt = - ILiAqi, Cpi(&l)=Cpi’(*l)=o 

P-W, = - VRO,, o,(fg=o (3.1) 

where p, and vk are the perturbation decrements in the fluid at rest. 
Inserting the series 

(3.2) 
m II 

into (2.6) and (2.71 and constructing the integral conditions of the Bubnov-Gale&in method 
we obtain a homogeneous linear system defining the coefficients amand fi ” 

ik sin 3 + + cos aDmn] a, + [ ikG cos aHlnm + (A -- !%I) &/*,I am) = 0 

2 ([ ikG cos aZIlm - (h - vm) &,J am -t ikGC~,,&) = 0 
m 

(3.3) 

where 

Cm,, = j 
1 1 

%,,cp,dx, D, = f 1 Om’rp,dx, 
n 

II,, = f j qnH9mdx 
n 

-1 -1 -1 

BI, = ( OifoOmdx, J, = j (PnAvr,dx 
-1 ;1 

Explicit ex 
ier in [3 and P 

ressions for the basis functions and for the matrix elements were given earl- 
4 . 

Condition of solvability of the homogeneous system (3.31 yields a characteristic equation 
which can be used to determine the decrements h, the latter themselves being the eigen- 
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values of the boundary value problem (2.6) to (2.8). We had retained 8 to 12 terma in the 

expsnsions (3.2). Thus, to find the decrements h we had to diagonalize matrices of the 16th 
to the 24th order. This was performed on a digital computer, using the orthogonal step 

method 161. 

4. Dectemental spectrum and monotonous instability. Characteristic 
perturbation decrements h depend on the parameters of the problem, namely, on the Gras&of 
(G) and the Prandtl @‘) numbers, perturbation wave number k and the angle a of in&nation 
of the layer to the vertical. 

Fig. 2 

Fig. 2&ws the lowest levels of the decremental spectrum as functions of the paramb 
ter X= t,t’kG for fixed values k 9: 1 and P = 1, and for various orientations of the layer. 

Solid lines represent the real levels of “isothermal“ perturbations, while the broken lines 
refer to “nonisothermal” perturbations {for classification of the levels see [3] 1. Dash-dot 
lines represent real parts of the complex-conjugate level pairs. 

Fig. 2a shows the decremental spectrum for a horizontal. layer heated from below (a = 
= - 90°, Rayleigh problem). Here all decrements are real (monotonous perturbotiona) and 
only simple intersections of levels are possible. Some of the decrements become negative 
with increasing X, thus giving rise to monotonous instability. Points of intersection of 
the decremental lines with the % -axis yield an increasing sequence of the critical Rayleigh 
numbers defining the spectrum of instability of the equilibrium of fluid relative to the ap 

pearance of convection (*I. 

(Footnote carried forward to next pa&e) 
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When the orientation of the layer deviatee from the horizontal, then the structure of the 

spaatnna is altered (Fig. 2 b and sabseqaent). Under an arbitrarily small deviation from the 
horfa+ta& &up10 interasctiona disappear. Real levela merge into complex conjugate pairs 
(o&&q perturbationa) which may -metimes (with increasing x 1 separate back into 
two real levele. Change of the atructura of the spectrum is connected with the fact, that, 
when the layer is inclined when the developing perturbation pattern io anperimposcd on the 
steady convective flow, while in the limiting Rayleigh case (a = - 90°) they develop in 
the fluid at rest. 

From the point of view of stabilfty, the most interesting is the lowest real level inter- 
aecting the x -axis. Fig. 2 shows that the position of the critical point changes with in- 
clination. Moreover, the interlocking of the levels results ia a change of modes responsible 
for-the onset of the monotonous instability. Thus, when a = - 909 the instability depends 
on the lowest thermal level v ; when Q = - SO*, the instability is generated by the levbl 

vi, while when a = O”, the cJtica1 point is given by the “mixture” of the thermal and ieo- 

thermal levels vt and p t. 

Critical Grasshof Number G* depends on the parameters k, P and a. When P and u are 

fixed, the hunction G*(k) defiieo a neutral curve which has a minimum at tbc point k, The 
corresponding minimum critical Grasshof number G*,,, defines the boundary of monotonous 

instability for the given values of P and Q. 
Fig. 3 showe the dependence of G* on a for 

several values of the Prandtl number, :btained 
from the spectra and from the neutral curves. Two 
ranges of values of the angle Q can be distin- 
guished. When the layer is nearly horizontal (-90° 

<a<- 500), the critical values G*, depend es- 

sentielly on the Prandtl number, and the product 
C*,P is practically constant. Thus in this range 

of val&s of a, the boundary of instability is de- 
S fined by the critical Rayleigb number R = GP and 

rig. 3 this, as we know, is the feature characteristic of 
the thermal eqnilibrium instability. Indeed, within 

this range of u the breakdown of the steady state is caused by a Rayleigh type instability 

arising when the fluid is heated from below. When a = - 90°, a purely cmvective step ap- 
pear-s. Over the range of angles close to - 90 *, the instability has also Rayleigh nature 
with one difference, namely, that it is developed over the pattern of a slow convective mo- 
tion caused by a low horizontal temperature gradient. 

In the range U > - SO0 the picture is different. Thermal instability mechanism is no lon- 
ger predominant aud it is absent when u > 0’. This is due to the fact, that the heated layer 
is then situated in the upper part, and this corresponds to a stable temperature distribution. 
Under these conditions the breakdown of the steady state ia caused by the hydrodynamic 
inatability of two opposing convective flows. The Grasshof number G, practically indepen- 

dent of the Prandtl number, is now the defining parameter. The limiting case as a + 909 
corresponds to the horizontal layer heated from above. Since, as we know, a fluid heated 
from above is in a stable equilibrium, we have G* + 00 as a + 909 

The critical value of the wave number km corresponding to a minimum on the neutral curve 

is practically independent of P and weakly dependent on a. We find that, when a changes 
from - 90’ to + 60°, k, decreases uniformly from 1.56 to 1.30. 

It ghould be stressed that the changeover from the convective instability mechanism to 

the hydrodynamic one on increasing a from - 90’ is smooth, since it corresponds to a con- 
tinuous change of values along one branch of instability. 

l ) We note that the critical values of the Grasshof number for the loweat four levels of in- 
stability, coincide to within a tenth of a percent with the values obtained in [7] from the 
exact characteristic equation for the Rayltigh spectrum. 
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a. Short wave perturbations and oscillatory instability. When l 
plane, horizontal fluid layer is heated from below, short wave perturbations lead to unstr 
ble eqnilibrium when the temparature difference ia sufficiently high. We find that at high 
values of k, the critical Rayleigb numbers increase smoothly along the neutral stability 

curve R (k) according to the law R* - k4[81. 
If, on the other hand, the layer is vertical and heated from one side, then the steady me 

tion i‘s stable under the perturbations possessing high wave numbers: the neutral curve 

C l (kf has 8n asymptote at k = k o. The limit value ko is almost independent of P aad its 
numerical value is k = 2 (see [2 to 4)). All short wave perturbations with k > k,, decay. 

A question arises, concerning the behavior of the short wave perturbations with k > k, 
over the transitional range of angles. To aaswer this, we shall consider Fig. 4 showing two 

lowest levels of the decremental spectrum 
forP=l andk=2.5>ko. 

At a = - 813 both levels intersect the 
X-axis at the points a aad 6. At the point 
c real levels merge, forming a complex con- 
gate pair of decrements. The real part of the 
pair (common to both levels) is negative in 

\ / 
the region (cd) and positive to the right of 

.-A 
Fig. 4 

the point d. Thus, both perturbations decay 
monotonously in the region to the left of a. 

On the interval fab) we have monotonous instability with respect to one of the perturbations, 

while on the interval (be) both perturbations increase smooth. Interval (cd) represents the 
region of existence of the oscillatory instability in which both perturbations increase in the 
oscillatory manner. To the right of d we have a stalle region (decaying oscillatory pertur- 
bations). Fig. 4 shows the lines representing two lowest decrements for Q = - 78’ aad 
a, = - 700, which illustrate the deformation of the spectrum with changing CC. 

Fig. 5 shows the stable region on the f $??, ahplane for fixed P = 1 and k = 2.5. On the 
line a z - 900 we have two lowest critical values of the Rayleigh instability spectrum. 

Broken vertical line indicates, for comparison, the case 
ofa = - 81’ discussed above. Various regions are nnm- 
bered as follows: 1 denotes the stable region (both per- 
turbations decay smoothly); 2,denotes a stable region 
in which both perturbations decay in the oscillatory 
manner; 3 denotes the region of monotonous instability 
for the tr -perturbation; 4 denotes the region of monoton- 

ous insta llrty for both perturbations =d 5 the region 8. * 
of oscillatory instability (shaded). 

Thus, we see that the instability under short wave 
perturbations occurs only when the layer is nearly hori- 
zontal, the position corresponding to the heating from 

_7y” below. With the angle of inclination to the horizontal 

Fig. 5 
increasing, the short wave instability disappears, and 

its rate of disappearance is proportional to ths vaIue of 
k. Fork = 2.5, the perturbatioua begin to decay when the augla of inclination of the layer 

to the horizontal exceeds 15’. 

An interasting fact which craerges from this is, that an oscillatory instability with resm 
pect to short wave perturbations exists in a certain parametric region. This does not t&e 
place in the limiting cases, when the layer is aither horizontal, or vatical. 

6. Upper levels of the lastability spectrum. In conclusion w4 shall con- 

sider the problem of behavior of the upper instability levels with varyfng a. We how, that 

when rho layer is horizontal aad heated from below,.then an fugnite increasing sequana of 
the critical Grasshof numbers exista for every value of the wave number. We have shown 
above that the lowest of thesa crftfcal numbers is smoothly trausfonued, on varying a, into 
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the critical value defining the boundary of stability of the steady convective fiow. Since 

only one critical value and a aniqne levef of fustahility exfst (see [4f) when tbe layer is 
verciaJ, the qmstion ariiras concerning the fate of the other levels of the Rayleigh insta- 
bility ttpactntm when the orfentetfon of the leyer is varied. 

To ascertain this problem, we have oomputed the decrements which gave, at a = - QO’, 
the se&d and third level of the Rayleigh instability 
spectrum, We found that when the layer deviates from 
the horizontal, then the upper instability levels close, 
the process being analogous to that described in Set- 
tion 5, 

Fig. 6 

Fig. 6 shows the stability pattern illustrating the be- 
havior of the lowest three spectral modes (for P = 1 and 
k = 1). The regions are numbered as follows: 1 - stable 
region, decay of all three perturbations; 2 - smooth 
growth of the first and smooth decay of tbe second and 
third perturbations; 3 - smooth growth of the first, oscil- 

latory decey of the second and third perturbations; 4 - 
smooth growth of the first and second and smooth decay 
of the third perturbation; 5 - the region of monotonous 
instability with respect to all three perturbations; 6 - 
region of oscillatory instability for the second and third 
perturbation. 

Thus we see that, when the layer deviate8 from the horizontal by a small amount, the 
Rayleigh spectrttm degeneretts and only one (lowest) level of the monotonous instability 
preserved. 

1. 

2. 
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